亚洲精品a,久久AV一区二区三区码无码,精品少妇久久久久久久视频,不卡1区2区

email info@szyujiaxin.com
御嘉鑫LOGOSHENZHEN YUJIAXIN TECH CO.,LTD.
TECHNOLOGY
PRODUCTS
CONTACT US
  • Email: info@szyujiaxin.com
  • Skype: +8615986816992
  • Whatsapp: +8615986816992
  • Wechat: yujiaxin-666
  • QQ: 2269845694
Your Current Position :Home > TECHNOLOGY > Detailed Process Description

Properties of F75 CoCrMo alloy


 

Date:[2023/12/21]
 

1.1 General characteristics 

Cobalt-based alloys have been used in demanding applications for as long as investment casting has been available as an industrial process. Arcam’s Electron Beam Melting technology competes directly with investment casting and is a viable choice for manufacturing complex parts in cobalt-based alloys. The majority of investment castings made from the cobalt super alloys are cast in an open atmosphere. With Arcams Electron Beam Melting process the vacuum atmosphere provides a controlled environment and enables superior material properties in the manufactured parts. CoCrMo alloys are widely used for medical prosthetic implant devices. The alloys are especially used where high stiffness or a highly polished and extremely wear-resistant material is required. CoCrMo alloys are the materials of choice for applications such as knee implants, metal-to-metal hip joints and dental prosthetics.

Cobalt alloys also play an important role in the performance of aero- and land-based gas turbines. While vacuum cast nickel alloys predominate in the hot sections of modern aero turbine engines, cobalt alloys are routinely specified for particularly demanding applications such as fuel nozzles and vanes for industrial gas turbines. Arcam ASTM F75 is a non-magnetic CoCrMo alloy exhibiting high strength, corrosion resistance, and excellent wear resistance. It is widely used for orthopaedic and dental implants. Highly polished components include femoral stems for replacement hips and knee condyles. Other cobalt medical implants include acetabular cups and tibial trays. In all cases, but especially in hip components, material quality is imperative as parts are heavily loaded and subject to fatigue.

1.2 Special characteristics

The Arcam ASTM F75 CoCr alloy is also suitable for Rapid Manufacturing of production tools for injection molding of plastic parts. The high hardness of the material and the excellent material qualities allow polishing components to optical or mirror-like finishes, and ensures long tool life. Tools can be built with complex geometries, and the conformal cooling channels further enhance the tool’s life and increase productivity, part and surface quality.

1.3 Applications

CoCrMo is typically used for:

Gas turbines

Orthopaedic implants

Dental implants

1.4 Powder specification

The Arcam ASTM F75 CoCr alloy powder for EBM is produced by gas atomization and the chemical composition complies with the ASTM F75 standard’s specification. The particle size is 45100 microns. This limitation of the minimum particle size ensures safe handling of the powder. Please refer to the Arcam MSDS (Material Safety Data Sheet) for more information about the handling and safety of the Arcam ASTM F75 CoCr alloy.

1.5 Chemical composition


1.6 Mechanical properties


Section 2. Post process

2.1 Sintering by MIM

2.2 Heat treatment

The following heat treatment program is recommended.

1. If necessary, the Hot isostatic pressing (HIP) in a shared cycle, with the following parameters: – 1200 °C 1000 bar argon 240 minutes.

2. Homogenisation (HOM) heat treatment, with the following parameters: – 1220 °C 0.70.9 mbar argon 240 minutes. As rapid quench rate as possible, from 1220°C to 760°C in 8 minutes maximum. The purpose is to dissolve carbides and improve the isotropy of the microstructure, reducing the brittleness of the as-built EBM material. (MIM, Metal-powder Injection Molding also follow the HOM treatment after sintered)

2.3 Machining 

Parts manufactured in the EBM process feature good machinability. Parts produced using the Arcam EBM process demonstrate excellent results when using any conventional machining process. The excellent properties displayed by the parts manufactured with EBM allow polishing of the parts to a mirror or optical finish for use in dies and other applications requiring a superior surface finish.

2.4 Microstructure Manufacturing 

CoCrMo parts with EBM results in fully dense parts without weld lines in the material before or after heat treatment (HIP+HOM). The as-built material consists of elongated grains containing carbide precipitation. Heat treatment transforms the microstructure into an isotropic structure with a substantial reduction of visible carbides.

The images below show the typical microstructure before and after heat treatment (HIP+HOM). The as-built material has elongated grains in the build direction (Z). It contains a high density of carbides that result the high hardness of the as-built material.

3. As-built microstructure, etched cross-section along the Z-direction
HIP+HOM completely transforms the microstructure into an isotropic state. The carbides are dissolved, leading to the increased ductility and reduced hardness demonstrated in the after the heat treatment specifications. There is no porosity in the as built or in the HIP+HOM material.

4. Microstructure after HIP+HOM, etched cross-section along the Z-direction




新旧精品一区二区三区| 亚洲精品一区色综合| 草久久综合一区二区| 99xxx| 在线麻豆视频一区二区| 美女被操逼网址| 日韩爆草在线| 久久只有这有精品97| 亚洲色欲35p| 伦理片 亚洲一区 欧美 在线播放| 色色欧美一本道| 久久亚洲精品人成综合网| 男人张开腿视频网站| 日本精品3D动漫一区二区| 日本色色天天| 又大又粗又爽的视频| 日韩高清在线不卡| 久久久久久久AV无码大片| 成人性感国产| 人妻精品视频在线| 最新偷拍| 欧美偷拍另| 99久久人妻无码精品系列日本| 日本看B视频| 先锋资源av| 操逼视频实拍| 亚洲激情第三区| 欧美一欧区二欧区三免费| 国产精品福利影院一区| 五月婷婷视频看看| 欧美日韩综合五区| 免费视频艹B| 日本vs精品少妇| 麻豆亚洲自偷拍精品日韩另| 抽插网站av大全免费观看| 她也色福利在线视频| 广西| 日韩三级久久无码大片| 久久6699精品一区加| 精品久久人人爽天天玩| h网站国产|